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ABSTRACT

In this work, we first propose a deep depthwise Convolutional

Neural Network (CNN) structure, called Add-Net, which uses bi-

narized depthwise separable convolution to replace conventional

spatial-convolution. In Add-Net, the computationally expensive

convolution operations (i.e. Multiplication and Accumulation) are

converted into hardware-friendly Addition operations. We metic-

ulously investigate and analyze the Add-Net’s performance (i.e.

accuracy, parameter size and computational cost) in object recog-

nition application compared to traditional baseline CNN using

the most popular large scale ImageNet dataset. Accordingly, we

propose a Depthwise CNN In-Memory Accelerator (DIMA) based

on SOT-MRAM computational sub-arrays to efficiently accelerate

Add-Net within non-volatile MRAM. Our device-to-architecture

co-simulation results show that, with almost the same inference

accuracy to the baseline CNN on different data-sets, DIMA can

obtain ∼1.4× better energy-efficiency and 15.7× speedup compared

to ASICs, and, ∼1.6× better energy-efficiency and 5.6× speedup

over the best processing-in-DRAM accelerators.

1 INTRODUCTION

Deep Convolutional Neural Network (CNN) has achieved great

success due to outstanding performance in image recognition over

large scale data-sets such as ImageNet [1]. Following current trend,

when going deeper in CNNs (e.g. ResNet employs 18-1001 layers),

memory/computational resources and their communication have

faced inevitable limitations. This has been interpreted as “CNN

power and memory wall” [2], leading to the development of differ-

ent approaches to improve CNN efficiency at either algorithm or

hardware level. Model pruning [3], parameters quantization [4, 5]

and rank refactorization [6] are the most widely-explored algorith-

mic approaches to mainly mitigate above challenges. Meanwhile, it

has been proven that convolutional layers consume up to ∼90% [1]

of execution time and computational energy of whole CNN in both

CPUs and GPUs, with the main purpose of feature extraction.

In hardware design domain, the isolated memory and computing

units (GPU or CPU) interconnected via buses has faced serious

challenges, such as long memory access latency, significant con-

gestion at I/Os, limited memory bandwidth, huge data communi-

cation energy and large leakage power consumption for storing
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network parameters in volatile memory [7]. To address these con-

cerns, Processing-in-Memory (PIM) CNN accelerators, as a poten-

tially viable way to address memory wall challenge, have been

widely explored [7–9]. The key concept behind PIM is to embed

logic units within memory to process data by leveraging the inher-

ent parallel computing mechanism and exploiting large internal

memory bandwidth. It could lead to remarkable saving in off-chip

data communication energy and latency. An ideal PIM architecture

should be capable of performing bulk bit-wise operations used in a

wide spectrum of applications [10]. The proposals for exploiting

SRAM-based PIM architectures can be found in recent literature

[11]. However, PIM in context of main memory (DRAM- [8]) pro-

vides more benefits in recent years owing to the larger memory

capacity and off-chip data communication reduction as opposed

to SRAM-based PIM. However, the existing DRAM-based PIM ar-

chitectures encounter several inevitable drawbacks, such as high

refresh/leakage power, multi-cycle logic operations, operand data

overwritten, operand locality, etc.

The PIM architectures have recently become even more popular

when integrating with emerging Non-Volatile Memory (NVM) tech-

nologies, such as Resistive RAM (ReRAM) [7]. ReRAM offers more

packing density (∼ 2−4×) thanDRAM, and hence appears to be com-

petitive alternatives to DRAM. However, it still suffers from slower

and more power hungry writing operations than DRAM [12]. Spin-

Transfer Torque Magnetic Random Access Memory (STT-MRAM)

[13] and Spin-Orbit Torque Magnetic Random Access Memory

(SOT-MRAM) [9] are other promising high performance candidates

for both the last level cache and the main memory, due to their low

switching energy, non-volatility, superior endurance, compatibility

with CMOS technology, etc. Meanwhile, MRAM technology is un-

dergoing the process of commercialization [14]. Hence, PIM in the

context of different NVMs, without sacrificing memory capacity,

can open a new way to realize efficient PIM paradigms [7, 10].

In this work, we focus on massively reducing the computational

complexity and parameter size in convolutional layers of CNN

while preserving similar inference accuracy. It leads to an efficient

hardware-friendly deep neural network architecture with binarized

depthwise separable convolution (i.e. a refactorized form of normal

convolutional layer) referred to as Add-Net. Our contributions can

be summarized as: (1) For the first time, we evaluate the proposed

Add-NET performance in objection recognition application using

various hallmark datasets, including MNIST, SVHN, CIFAR10 and

ImageNet. (2) We propose a Depthwise CNN In-Memory Accelera-

tor (DIMA) to accelerate Add-Net within non-volatile SOT-MRAM.

(3) We then perform detailed analysis about the effect of inter-

nal hyper-parameter configurations, which shows the trade-off

between neural network accuracy and hardware resources (e.g.

energy, memory storage/access and area).
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Figure 1: Data flow for depthwise separable convolutional

layer. The default channel multiplierm is 1 in this figure.

2 BINARIZED SEPARABLE CONVOLUTION
2.1 Depthwise Separable Convolution

Recently, depthwise separable convolution [15] has been widely

used in many state-of-the-art deep neural networks, such as Mo-

bileNet [16] and Xception [17], which replaces the traditional con-

volutional layers to reduce CNN computational cost and memory

usage. As a factorized form of conventional spatial-convolution, the

depthwise separable convolution consists of two parts: depthwise

convolution and 1×1 convolution (a.k.a. pointwise convolution).

The conventional spatial-convolution mainly performs channel-

wise feature extraction, then combining those features to generate

new representations. Such two-step task could be separately han-

dled by depthwise and pointwise convolutions.

The operation of depthwise separable convolution is described

in the form of data flow in Fig. 1 considering the input tensor in

the dimension of h ×w × p, which denote height, width and chan-

nel, respectively. In the depthwise convolutional layer (Depthwise

Conv), each channel of input tensor performs convolution withm
kernels in the size of kh × kw correspondingly, which produces

p ·m feature maps.m is defined as channel multiplier herein. Those

generated feature maps are concatenated along the depth dimen-

sion as a tensor in size of h ×w × (p ·m)1, which is taken as the

input to pointwise convolutional layer (Pointwise Conv). Contrary

to the distinctive depthwise convolution, pointwise layer is just a

normal spatial-convolutional layer with 1 × 1 convolution kernel

size. Thus, it only linearly combines the p ·m input feature maps to

generate new representations with q output channels.

2.2 Add-Net

In previous works, such as BNN [18] and XNOR-NET [5], both

convolution kernel and activation function are binarized, which

converts the computationally-expensive convolution operation into

bit-wise logic operations and bit-count. Such aggressive model

compression method reduces the hardware resource utilization

at the cost of performance degradation to some extent. In this

work, we focus on the weight binarization while keeping the input

tensor of each convolutional layer quantized in multi-bit (8-bit

in 3). Accordingly, we construct a deep neural network with the

proposed binarized depthwise separable convolution referring to

the topology of ResNet [19], called Add-Net. The block diagram

of Add-Net is depicted in Fig. 2, which sequentially consists of an

Inception block2 (3× 3 spatial convolution, Batch-normalization and

ReLU), N -Basic block, Average pooling and Multi-Layer Perceptron

1The default hyper-parameter configurations in convolutional layers are: kernel size=
3 × 3, stride = 1, padding = 1, no bias.
2Similar as previous works of binarized/quantized neural network [4, 5], we do not
introduce binarization to the inception block.
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Figure 2: Block diagram of Add-Net.

(MLP). As the key component in our proposed neural network,

basic block includes batch normalization, quantization, depthwise

convolution and pointwise convolution bothwith binarizedweights.

Similar as XNOR-NET [5], we place the batch normalization before

the convolutional layer with binarized weight. In summary, the

response of basic block can be described as:

xt
l+1 =

p ·m∑
s=1

Quant

(
W ′
l
s ∗ BN (xs

l
)

)
· α t

l,s
(1)

where s ∈ [p ·m] and t ∈ [q] denote the input channel and output

channel, respectively. W ′
l
is the learned depthwise convolution

kernel with binarized weight. l is the index of basic block, while p
is the number of input channels of lth basic block. αl is the learned
weight of pointwise convolution. BN () is the batch normalization

function. Quant () is the quantized activation function as in [4].

In this work, we choose binary weights for both depthwise and

pointwise conv., so there are no multiplication in those convolu-

tional layers. Moreover, in order to make the computation in the

convolutional layers could be easily implemented by our proposed

in-memory computing framework (discussed in section 3), we intro-

duce the quantized activation function to divide the intermediate

tensor into multi-level (default as 8-bit in this work). The formulas

of binarization function Bin() and multi-bit quantization function

Quant () in the forward path can be accordingly described as [4]:

Bin(r ) = E(|wl |) · Siдn(r ) =

{
+E(|wl |) i f r ≥ 0

−E(|wl |) otherwise
(2)

Quant (r ) =
2

2k − 1
round((2k − 1)(

tanh(r )

2max (|tanh(r )|)
+ 0.5)) − 1 (3)

where E(|wl |) calculate the mean of the absolute value of weights

in layer l as the layer-wise scaling factor, and such scaling factor is

re-calculated for each input batch during the training process. r is
the element either in intermediate tenor or weight tensor. k is the

targeted number of bits for quantization. Beyond that, the Straight-

Through Estimator (STE) [20] is applied to calculate gradient in

backward path due to the quantization function owns zero deriva-

tives almost everywhere, where the mathematical representation

is:

∂д

∂r
=

{
∂д
∂r ′ i f |r |≤ 1

0 otherwise
(4)

where д is the loss, r and r ′ is the input and output of the quantiza-

tion function, correspondingly. In the backward path, the gradient

is clipped when the input of the quantization function is out of

the range from -1 to +1. For quantizing/binarizing the weights in

convolutional or fully-connected layers, we retain the weights in

real value for the backward training. For the forward path, the

weights are binarized using function in Eq. 2. As a result of this bi-

narization, there are no multiplications for convolution operations



and the main computations are 8-bit add/sub operations. Note that,

the scaling factor is shared by the whole network layer and will be

implemented after binarized convolution computation.

In order to clearly show the benefits of Add-net, we analyze

the hardware cost of standard spatial convolution and binarized

depthwise separable convolution in terms of computational cost and

parameter size. As depicted in Table 1, not only the multiplications

in depthwise separable convolution operations are fully replaced by

the hardware-efficient add/sub, but also the number of operations is

reduced approximately by a factor of ∼m/(kh · kw). For parameter

size, using the floating point depthwise separable convolution to

replace the normal convolutional layer could achieve a compression

rate of ∼m/(kh · kw). If further binarized, the model size could be

compressed to ∼m/(kh · kw) ∗ 32.

Table 1: Hardware cost of standard convolution in CNN and

Add-Net. n is the number bits of weights in pointwise layer.

Computation Cost
Memory Cost

Mul–O(N 2) Add/Sub–O(N )

CNN h ·w · kh · kw · p · q h ·w · kh · kw · p · q kh · kw · p · q · 32

This

work
–

h ·w · kh · kw · p ·m
+h ·w · p ·m · q

kh · kw · p ·m
+p ·m · q

This work

CNN
0

m

q
+

m

kh · kw

m

q · 32
+

m

kh · kw · 32

3 DIMA ARCHITECTURE

In the following sections, we show that our proposed binarized

depthwise separable CNN (Add-Net) can achieve four significant

objectives in hardware implementation: (1) Reducing the energy

consumption of convolutional layers through utilizing efficient

add/sub-based computing; (2) Reducing the memory (i.e. network

parameter) storage and access required for feature extraction; (3)

Reducing the computation area overhead and (4) Accelerating in-

ference task within memory. The architectural diagram of the pro-

posed Depthwise CNN In-Memory Accelerator (DIMA) is shown in

Fig. 3a consisting of Image and Kernel Banks, SOT-MRAM based

computational sub-arrays and a Digital Processing Unit (DPU) in-

cluding three ancillary units (i.e. Quantizer, Batch Normalization

and Activation Function). This architecture can be adjusted by Ctrl

unit to process entire Add-Net. Assume Input fmaps (I ) and Kernels
(W ) are initially stored in Image Bank and Kernel Bank of mem-

ory, respectively. Except for the inception block, inputs/kernels

need to be constantly quantized (to n-bit) before mapping into

computational sub-arrays which are designed to handle the compu-

tational load of DIMA employing in-memory computing. However,

quantized shared kernels can be utilized for different inputs in the

pointwise convolutional layer. This operation is basically performed

using DPU’s Quantizer (see DPU in Fig. 3a) and then results are

mapped to the parallel sub-arrays.

3.1 Computational Sub-array
Fig. 3b shows the presented in-memory computing sub-array ar-

chitecture which is accordingly implemented by SOT-MRAM in

Fig. 3c A . This architecture mainly consists of Write Driver (WD)

B , Memory Row Decoder (MRD) C , Memory Column Decoder

(MCD), Sense Amplifier (SA) D , multiplexers (MDMUX, GMUX)

and FA/FS unit and can be adjusted by Ctrl unit E to work in dual

mode that perform both memory write/read and in-memory logic

operations (using two distinct methods). SOT-MRAM device is a

composite structure of spin Hall metal (SHM) and Magnetic Tunnel

Junction (MTJ). The resistance of MTJ with parallel magnetization

in both magnetic layers (data-‘0’) is lower than that of MTJ with

anti-parallel magnetization (data-‘1’). Each SOT-MRAM cell located

in computational sub-arrays is associated with the Write Word Line

(WWL), Read Word Line (RWL), Write Bit Line (WBL), Read Bit

Line (RBL), and Source Line (SL) to perform operations as follow:

1) Memory Write/Read: To write a data bit in any of the SOT-

MRAM cells (e.g. M1 in Fig. 3c A ), write current should be injected

through the SHM (Tungsten, β −W [21]) of SOT-MRAM. Therefore,

WWL1 should be activated by the MRD where SL1 is grounded.

Now, in order to write ‘1’(/‘0’), the voltage driver (V1) connected

to WBL1 is set to positive (/negative) write voltage. This allows

sufficient charge current flows from V1 to ground (/ground to V1)

leading to change of MTJ resistance. For typical memory read, a

read current flows from the selected SOT-MRAM cell to ground,

generating a sense voltage at the input of SA D , which is compared

with memory mode reference voltage (Vsense,P<Vref<Vsense,AP).

This reference voltage generation branch is selected by setting the

Enable values (ENAND ,ENM ,ENOR )= (0,1,0). If the path resistance

is higher (/lower) than RM , (i.e. RAP (/RP )), then the output of the

SA produces High (/Low) voltage indicating logic ‘1’(/‘0’).

2) Computing Mode: The proposed computational sub-array is

designed to perform the computation between in-memory operands

using two distinct methods referred to as 2-row activation and 3-

column activation. The main ideas behind developing 2-row and 3-

column activation methods are to perform bulk bit-wise in-memory

AND operation and in-memory addition/subtraction, respectively.

In the 2-row activation method, every two bits stored in the iden-

tical column can be selected and sensed simultaneously employing

modified MRD [10], as depicted in Fig. 3c A . Then, the equiva-

lent resistance of such parallel connected SOT-MRAMs and their

cascaded access transistors are compared with a programmable

reference by SA. Through selecting different reference resistances

(ENAND ,ENM ,ENOR ), the SA can perform basic in-memory Boolean

functions (i.e. AND and OR). For AND operation, Rr ef is set at the

midpoint of RAP //RP (‘1’,‘0’) and RAP //RAP (‘1’,‘1’). As an example,

considering the data organization shown in Fig. 3b where A and

D operands correspond to M1 and M4 memory cells in Fig. 3c A ,

respectively, 2-row activation method generates AD after SA. To

validate the variation tolerance of sense circuit, we have performed

Monte-Carlo simulation with 100000 trials. A σ = 5% variation is

added on the Resistance-Area product (RAP), and a σ = 10% process

variation is added on the TMR. The simulation result of (Vsense)

distributions showed the sufficient sense margin of in-memory

computing. In this work, to avoid read failure, only two fan-in in-

memory logic is used. Parallel computing/read is implemented by

using one SA per bit-line.

In the 3-column activation method, we have devised a Mode de-

multiplexer (MDMUX) right after SAs to switch between memory

mode and this new computingmethod. As can be seen in block-level

sub-array architecture (Fig. 3b), the output of each SA is routed to

MDMUX. According to the mode selector, output data can be routed

to either GMUX or FA/FS unit. The key idea behind exploiting a

CMOS FA/FS unit is to realize a fast in-memory full adder (/sub-

tractor) after SAs to efficiently process the data avoiding inevitable



kh

w
I1[31] I1[30] I1[1] I1[0]
I2[31] I2[30]

[[ ]]
I2[1]

[[ ]]
I2[0]

W

kw

p

p
Ih

W
1[

31
]W

1[
30

]
W

1[
1]]

W
1[

0]
W

2[
31

]W
2[

30
]

W
1

WW
[[1[[

]]1
W

2[
1]

W
1

WW
[[0[[

]]0
]] ]]

W
2[

0]

mode 

add

SA
Out

Vref
Vsense

EN
M

EN
A

N
D

EN
O

R

Ise
ns

e

Ire
f

A C 

Vp

FA
/F

S
GM

U
X

D
in

-I
nt

ra

Vn

WBLCC

WWL1
M
R
D

Rst

Req

p

t

G

Command
Decoder

Cmd Add

Timing Ctrl

Data 
flow 
ctrl

D D
in

-I
nt

er

Out

Rr
ef

,M

Rr
ef

, A
N

D

Rr
ef

,O
R

W
B

L1

R
BL

1

RWL1

M1

M4
SL1

D
 SL2

RWL2

AD

Glossary:

SA 
WWL1

W
B

L1

R
BL

1

RWL1

M1 M2 M3

SL1

A BC
Add/
Sub

SCo

SA 

B 

WWL1

Figure 3: (a) General overview of DIMA architecture, (b) Block level sub-array architecture of DIMA, (c) 2-row and 3-column

activation methods of computational sub-array and functional blocks.

operand write-back in conventional in-memory adder designs as

well as accelerating in-memory processing. For this computation

method, MCD is modified (similar to that of MRD) such that it can

activate more than one RBL at the same time. As a result, more

than one column can be sensed and routed from SAs to FA/FS unit.

Assume A, B and C operands (in Fig. 3b) correspond to M1, M2

and M3 memory cells in Fig. 3c A , respectively, the 3-column

activation yields Sum(/Di f f erence) and Carry(/Borrow) bits.

3.2 In-Memory Binary-Weight Convolver

DIMA offers in-memory Binary-Weight Convolver and in-memory

Bit-Wise Convolver to handle main operations of the Add-Net based

on the proposed in-memory computing schemes. From hardware

implementation perspective, there are two types of convolution op-

erations in Add-Net that need to be taken into account. The first one

is binary-weight convolution located in basic block with binarized

kernels and quantized inputs. The second one is bit-wise convo-

lution located in inception layer and MLP in which convolution

between different bit-width inputs and kernels requires bulk bit-

wise operations. While both types can be implemented with either

of DIMA’s convolution schemes, as will be described accordingly,

we still propose two distinct convolution methods to boost the

accelerator’s performance with smaller area overhead. As shown

in Fig. 3a, two classes of sub-arrays (A and B) are respectively allo-

cated to in-memory binary-weight and bit-wise convolvers. Note

that, all the computational sub-arrays support both memory and

computing modes and only differs from required add-on hardware

which will be discussed in the following. The ratio between A and

B is specially determined considering the network specifications

and performance constraints.

As the main operations of Add-Net, depthwise and pointwise

convolutions are the most critical units of the accelerator, as they

are responsible for the most iterative block which takes up the vast

majority of the run-time in Add-Net. These units must keep high

throughput and resource efficiency while handling different input

widths at run-time. As discussed earlier, the main operation in this

block is add/sub. So, here we propose an in-memory binary-weight

convolver based on 3-column activation method to handle multi-

bit addition/subtraction operations. While there are few designs

for in-memory adder/subtractor in literature [22], to the best of

our knowledge, this work is the first proposing a fast (2-cycle)

and parallelable in-memory add/sub method. As seen in Section

3.1, 3-column activation method of the DIMA can be utilized to

perform one-bit in-memory add/sub operation quite efficiently in

one cycle (memory read). After the computation, the results need

to be stored in the sub-array to be prepared for next computing

round. This can be fulfilled using the modified WD and MRD in

one cycle (memory write). We take the data organization shown in

Fig. 4a as an instance to show 4-bit addition process. As can be seen

each computational sub-array is able to implement n-bit add/sub
operations (4-bit, herein) in 2×n cycles. In this case,C3S3S2S1S0 is
produced as the summation of A3A2A1A0 and B3B2B1B0 operands.

k7,f
7

k4,f
4

k1,f1

k7,f
7

k5,f
5

k2,f2

k9,f9

k6,f6

k3,f3

k7,f
7

k4,f
4

k1,f1

k7,f
7

k5,f
5

k2,f2

k9,f9

k6,f6

k3,f3

k7,f
7

k4,f
4

k1,f1

k7,f
7

k5,f
5

k2,f2

k9,f9

k6,f6

k3,f3

f7
f4
f1

f8
f5
f2

f9
f6
f3

f7
f4
f1

f8
f5
f2

f9
f6
f3

f7
f4
f1

f8
f5
f2

f9
f6
f3

k7
k4
k1

k8
k5
k2

k9
k6
k3

k7
k4
1

k8
k5
1

k9
k6
1

k7
k4
1

k8
k5
1

+1
-1
-1

+f7

-f4

-f8

+f5

+f2

+f9

-f6

+f3

kw

kh
+1
-1
-1

-1
+1
+1

+1
-1
+1

m

f7
f4
f1

f8
f5
f2

f9
f6
f3

m

kw

kh
-f1 +f2 +f7 -f8

-f1

Figure 4: (a) Multi-bit in-memory addition in DIMA, (b) In-

memory binary-weight convolver in DIMA.

Fig. 4b shows the requisite data organization and computation

of depthwise and pointwise convolutional layers. Initially,m chan-

nels (here, 4) in the size of kh × kw (here, 3×3) are selected from

input batch and accordingly produce a combined batch w.r.t. the

corresponding {-1,+1} kernel batch. This combination is readily ac-

complished by changing the sign-bit of input data corresponding



to its kernel data. The combined batch is then mapped to the desig-

nated computational sub-arrays (Class A). Considering 16-activated

sub-arrays (within 4 memory matrix (MAT) structures as depicted

Fig. 4b), each combined batch’s channel (Ch) can be processed us-

ing four parallel sub-arrays. Here, Ch-1 to Ch-4 are respectively

mapped to MAT-1 to MAT-4. After mapping, the parallel activated

sub-arrays of DIMA operate to produce the output feature maps

leveraging the same addition/subtraction method shown in Fig. 4a.

3.3 In-Memory Bit-Wise Convolver

Besides depthwise and pointwise convolutional layers in the basic

block, there are some other layers in the proposed CNN, such as

inception layer (directly taking image as inputs, not replaced by

basic block), pooling layer and MLP block. Note that, MLP layers

can be equivalently implemented by convolution operations using

1 × 1 kernels [4]. Thus, the rest layers could be implemented all

by convolution computation by exploiting logic AND, bitcount, and

bitshift as rapid and parallelizable operations [4, 9]. Assume I is
a sequence of M-bit input integers (3-bit as an example in Fig. 5)

located in input fmap covered by sliding kernel ofW , such that

Ii ∈ I is anM-bit vector representing a fixed-point integer.

I W

I = W =

I W = 16I

W

I

= =

W

I

Figure 5: In-memory bit-wise convolver in DIMA.

We index the bits of each Ii element from LSB to MSB withm =

[0,M − 1]. Accordingly, we represent a second sequence denoted

as Cm (I ) including the combination of mth bit of all Ii elements

(shown by colored elliptic). For instance, C0(I ) vector consists of
LSBs of all Ii elements “0110". ConsideringW as a sequence of N -bit

weight integers (3-bit, herein) located in sliding kernel with index of

n = [0,N − 1], the second sequence can be similarly generated like

Cn (W ). Now, by considering the set of allmth value sequences, the

I can be represented like I =
∑M−1
m=0 2mcm (I ). Likewise,W can be

represented likeW =
∑N−1
n=0 2ncn (W ). In this way, the convolution

between I andW can be defined as follow:

I ∗W =
M−1∑
m=0

N−1∑
n=0

2m+nbitcount (and (Cn (W ), Cm (I ))) (5)

As shown in data mapping step in Fig. 5, C2(W )-C0(W ) are

consequently mapped to the designated sub-array. Accordingly,

C2(I )−C0(I ) are mapped in the following memory rows in the same

way. Now, computational sub-array can perform bit-wise parallel

AND operation ofCn (W ) andCm (I ) as depicted in Fig. 5. The results
of parallel AND operations stored within sub-array will be accord-

ingly processed using Bit-Counter. Bit-Counter readily counts the

number of “1”s within each resultant vector and passes it to the

Shifter unit. As depicted in Fig. 5, “0001", as result of Bit-Counter

is left-shifted by 3-bit (×22+1) to “1000". Eventually, Sum unit adds

the Shifter unit’s outputs to produce the output fmaps. While the

computationally-expensive bulk AND operation can be readily

performed leveraging DIMA’s 2-row activation method in entire

memory sub-arrays like the one in [9], we still need to incorporate

CMOS bit-counter and shifter units in some of computational sub-

arrays (Class B). Average pooling operation is performed using Sum

and Shifter units, respectively, by summing up the output fmap’s

tensors and dividing (shifting) into rectangular pooling region size.

4 PERFORMANCE EVALUATION
4.1 Accuracy

4.1.1 DNN Software setup. Add-Net architecture is constructed

under the Pytorch framework, which recently optimized its depth-

wise convolution backend CUDA library to accelerate the training

process. We employ the Adam as optimizer to minimize the cross-

entropy loss. Owing to the large variation of intermediate output

caused by frequently-adjusted binary weights and binarization ac-

tivation function, small learning rate are preferable. We set the

initial learning rate as 0.001, which is reduced to 0.0001 through

scheduling.
4.1.2 Results. The experiments for Add-Net are conducted us-

ing two NVIDIA 1080Ti GPUs for image recognition application

with four common image data-sets i.e. MNIST, SVHN, CIFAR-10

and ImageNet. The test accuracy of Add-Net on these data-sets are

reported in Table 2. The model configurations for four data-sets

are as follow: (1) MNIST: 16 input channels, 5 basic blocks, 128

hidden neuron, 64 batch size, 3 × 3 kernel size, 4 channel multiplier.

(2) SVHN: 128 input channels, 5 basic blocks, 512 hidden neuron,

128 batch size, 3 × 3 kernel size, 4 channel multiplier. (3) CIFAR10:

512 input channels, 10 basic blocks, 512 hidden neuron, 32 batch

size, 3× 3 kernel size, 4 channel multiplier (4) ImageNet: ResNet-18

topology with conventional 3x3 spatial convolution layers replaced

by the basic-blocks described in Fig. 2, 256 batch size, 4 channel

multiplier. The baseline CNN reported in Table 2 uses normal spa-

tial convolution without any quantization, while the Add-Net uses

the aforementioned quantization and binarization techniques in

addition to the depthwise separable convolution layer. The hyper-

parameters configurations are identical between baseline and this

work. The results show that Add-Net can achieve the state-of-the-

art test accuracy, which is close to its normal spatial-convolution

counterparts. In large scale ImagNet simulation, we adopt 8-bit

activation quantization and binary depthwise separable convolu-

tion, the additional 2× model size reduction is at the cost of ∼ 2%

accuracy degradation compared to BWN [5]. Note that, we didn’t

report accuracy of BinaryConnect and BNN in ImageNet since they

do not report accuracy of binary Resnet.

Table 2: Top-1 inference accuracy (%) of MNIST, SVHN, CI-

FAR10 and ImageNet.

Baseline

CNN

Add-Net

(this work)

BinaryConnect

[23]

BNN

[18]

BWN

[5]

MNIST 99.46 99.45 98.99 98.60 –

SVHN 94.29 94.73 97.85 97.49 –

CIFAR-10 91.25 89.54 91.73 89.85 –

ImageNet 65.39 58.80 – – 60.8

Comp. Rate 1× 64× – – 32×



4.1.3 Effect of hyper-parameters. Weexamine the effect of hyper-

parameters on Add-Net performance. Since the neural networks

are trained from scratch instead of fine-tuning from the pre-trained

model, we chose SVHN as the representative experiment data-set

to report the results. It can be seen that by increasing the channel

multiplier from 1 to 16, the accuracy gradually increases.

Table 3: The SVHN test accuracy w.r.t channel multiplier (m)

Spatial Conv. Add-Net

weight-precision 32-bit 1-bit 1-bit 1-bit 1-bit 1-bit 8-bit

input-precision 32-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

m - - 1 2 4 8 16

Top-1 Test

Accuracy
94.29 94.84 93.82 94.61 94.73 94.84 95.02

4.2 Memory Storage

The comparison of model efficiency in terms of memory usage

required for processing one convolutional layer between Add-Net

and CNN baseline (32-bit and 8-bit) is shown in Fig. 6a. We ob-

serve that the binarized convolution blocks in Add-Net are much

more memory-friendly than the CNN counterpart, when using

small channel multiplier m. The memory storage reduction of a

convolutional layer in Add-Net to 32-bit CNN baseline is specifi-

cally reported in Fig. 6b. For instance, 97.2% and 88.7% reduction

are achieved whenm equals 1 and 4, respectively. This reduction

mainly comes from the reduced number of fixed kernel as discussed

in section 2.2. However, for eliminating the accuracy gap between

Add-Net and baseline CNN, larger channel multiplier is desired. For

instance 55.1% reduction is obtained settingm to 16. Considering

a trade-off between accuracy, memory storage, energy consump-

tion and performance, them parameter can be precisely tuned to

meet a specific hardware’s requirement. For instance, sacrificing

the inference accuracy by ∼0.3% (i.e. changingm from 16 to 4) in

SVHN data-set leads to ∼4× memory saving with a considerably

lower energy and higher performance as will be discussed in next

subsections.
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Figure 6: (a)Memory storage of CNN vs. Add-Net in different

configuration for a single conv. layer, (b) Memory storage

reduction of Add-Net to 32-bit and (c) 8-bit CNN baseline.

We have also plotted the memory storage reduction of Add-Net

to a sample 8-bit CNN baseline as a quantized network in Fig. 6c.

Note that such CNN shows a comparable accuracy to Add-Net or

32-bit CNN based on Table 3. This plot intuitively shows that in

order to get a higher accuracy, Add-Net will require larger memory

storage compared to 8-bit CNN in a specific case (m=16) which

reverses the memory reduction trend.

4.3 Area

Fig. 7 shows the breakdown of the area overhead resulted from

DIMA’s add-on hardware to memory chip. Our experiments show

that, in total, DIMA imposes 2.8% area overhead to the original

memory die, where Pinatubo [10], DRISA [8] incur 0.9% and 5% area

overhead, respectively. We observe that the modified controller and

drivers contribute more than 50% of this area overhead in a memory

group. It is obvious that enlarging the chip area brings in a higher

performance for DIMA and other designs due to the increased

number of sub-arrays, though the die size directly impacts the chip

cost. Therefore, in order to have a fair comparison with different

accelerators, the area-normalized results (performance/energy per

area) will be reported henceforth.

24%

16%

3%14%
9%

31%

0

50%

100%
misc

Voltage driver

 Ctrl

WBL and RBL
     drivers

Modified decoders &
    add-on mux

Controller

PCSA

Output driver

DPU

Figure 7: Area overhead of DIMA in a memory group.

Fig. 8a illustrates and compares the computational area overhead

required by conventional CNN and Add-Net for performing their

main operations. As can be seen, eliminating the mul in depthwise

separable convolution operations in Add-Net brings considerable

area-efficiency (up to 95.2%) compared to CNN that can be exploited

to enable higher computation parallelism. However, to fit a deep

neural network into a low-end ASIC, the number of logic cells may

come to shortage. The normal countermeasure is to split the com-

putation and multiplex the computation kernel, which restraints

the throughout. The better solution is to use the proposed binarized

depthwise separable convolution with the fine-tuning.
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Figure 8: (a) Normalized log-scaled area overheard imposed

by CNN and Add-Net for the computation, (b) Area reduc-

tion of the proposed network to CNN baseline.

4.4 Hardware Setup

In the following, we compare DIMA running Add-Net with state-of-

the-art inference acceleration solutions (based on DRAM, ReRAM,

ASIC and GPU) running a baseline CNN.

4.4.1 Modeling Setup. Bit-width configuration: For DIMA, 8-

bit quantized Add-Net with distinct configurations (m=1, 2, 4, 8, and

16) is considered for evaluation. In order to have a fair comparison,

we employ a particular bit-width for weight and activation <W:A>

(<1:8>) for DRAM-, ReRAM, ASIC- and GPU-based acceleration

methods rather than full-precision. Data-set: The SVHN data-set



[24] is selected for evaluation. The images are re-sized to 40×40 and

fed to the model. CNN Model: A CNN with 6 (bit-wise) convolu-

tional layers, 2 (average) pooling layers and 2 MLP layers is adopted.

MLP layers are equivalently implemented by convolutions.

4.4.2 Accelerators’ Setup. DIMA:We configure theDIMA’s mem-

ory sub-array organization with 256 rows and 512 columns per mat

organized in a H-tree routing manner, 2×2 mats (with 2/2 and 2/2 as

Row and ColumnActivations) per bank, 8×8 banks (with 1/8 and 8/8

as Row and Column Activations) per group; in total 16 groups and

512Mb total capacity. The ratio of computational sub-array (class A:

class B) is obtained 7:2. To assess the performance of DIMA as a new

PIM platform, a comprehensive device-to-architecture evaluation

framework along with two in-house simulators are developed. First,

at the device level, we jointly use the Non-Equilibrium Green’s

Function (NEGF) and Landau-Lifshitz-Gilbert (LLG) with spin Hall

effect equations to model SOT-MRAM bitcell [25, 26]. For the circuit

level simulation, a Verilog-A model of 2T1R SOT-MRAM device

is developed to co-simulate with the interface CMOS circuits in

Cadence Spectre and SPICE. 45nm North Carolina State Univer-

sity (NCSU) Product Development Kit (PDK) library [27] is used in

SPICE to verify the proposed design and acquire the performance

of designs. Second, an architectural-level simulator is built based on

NVSim [28]. Based on the device/circuit level results, our simulator

can alter the configuration files (.cfg) corresponding to different

array organization and report performance metrics for PIM opera-

tions. The controllers and add-on circuits are synthesized by Design

Compiler [29] with an industry library. Third, a behavioral-level

simulator is developed in Matlab calculating the latency and energy

that DIMA spends considering a particular application. In addition,

it has a mapping optimization framework for the CNN. DRAM:

We developed a DRISA-like [8] accelerator for low bit-width CNNs.

Two different computing methods of DRISA named 3T 1C and 1T 1C-
adder were selected for comparison. The 3T1C uses DRAM cells

themselves for computing and performs NOR logic on BLs. How-

ever, 1T1C-adder exploits a large n-bit adder circuit for n-bit BLs
after SAs. We modified CACTI [30] for evaluation of DRAM’s solu-

tions. Similar to [8], the controllers and adders were synthesized in

Design Compiler [29]. ReRAM: A Prime-like [7] accelerator with

two full functional (FF) sub-arrays and one buffer sub-array per

bank (totally 64 sub-arrays) were considered for evaluation. In FF

subarrays, for each mat, there are 256×256 ReRAM cells and eight

8-bit reconfigurable SAs. For evaluation, NVSim simulator [28] was

extensively modified to emulate Prime functionality. Note that the

default NVSim’s ReRAM cell file (.cell) was adopted for the assess-

ment. ASIC: We developed a YodaNN-like [2] ASIC accelerator. To

have a fair comparison, we select two versions with either 8×8 tiles

(33MB eDRAM) or 16×16 tiles (129MB eDRAM). Accordingly, we

synthesized the designs with Design Compiler [29] under 45 nm

process node. The eDRAM and SRAM performance were estimated

using CACTI [30]. GPU: We used the NVIDIA GTX 1080Ti Pas-

cal GPU. It has 3584 CUDA cores running at 1.5GHz (11TFLOPs

peak performance). The energy consumption was measured with

NVIDIA’s system management interface. Similar to [8], we scaled

the achieved results by 50% to exclude the energy consumed by

cooling, etc. Accordingly, based on 8-bit configuration of <A>, we

aggressively scaled GPU results by ×4 to get the peak performance
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Figure 9: Energy-efficiency of different accelerators normal-

ized to area (Y-axis=Log scale).

for the quantized network. Note that, GPU doesn’t support fixed

point CNN and real scale ratio should be less than four [8].
4.5 Energy
Fig. 9 shows the DIMA’s energy-efficiency results (frames per joule)

on Add-Net compared to different accelerators for performing a

similar taskwith a batch size of 1 and 8. As can be seen, the larger the

m is, the lower energy-efficiency is obtained, we nevertheless take

m = 4 as a mean to compare with the other platforms. As shown,

DIMA solution offers the highest energy-efficiency normalized to

area compared to others owning to its fast, energy-efficient and

parallel operations. We observe that DIMA’s solution is ∼ 1.9× and

1.6× more energy-efficient than that of DRAM-3T1C and 1T1C-

adder, respectively. In addition to large refresh power of DRAM-

based PIM accelerators [8], they are dealing with a destructive

data-overwritten issue due to the charge sharing characteristic of

capacitors. It means that the result of computation will ultimately

overwrites the operands. To solve this issue in the context of DRAM,

multi-cycle operations are set forth which has further degraded

PIM performance. Note that, despite the n-bit adder located after

SAs in DRAM-1T1C-adder solution will bring higher performance

compared to 1T1C, it has limited its energy-efficiency. We observe

that DIMA solution is 1.4×more energy-efficient than the best ASIC

solution. This energy reduction mainly comes from two sources: 1)

standard convolution is replaced with energy-efficient depthwise

separable convolution and 2) mul in convolution is converted to

add/sub due to binarization. Fig. 9 also shows that DIMA obtains

∼8.4× saving in energy compared to ReRAM solution.

4.6 Performance
Fig. 10 shows the DIMA performance (frames per second) results

on Add-Net in different configuration space of channel multiplier.

We observe that the smaller them is, the higher performance per

area is obtained for DIMA with higher energy-efficiency (Fig. 9).

Fig. 10 demonstrates that DIMA solution (m = 4) is 5.6× faster than

the best DRAM solution (1T1C-adder) and 15.7× faster than ASIC-

64 solution. This is mainly because of (1) ultra-fast and parallel

in-memory operations of DIMA compared to multi-cycle DRAM

operations and (2) the existing mismatch between computation and

data movement in ASIC designs and even 1T1C-adder solution. As a

result, ASIC-256 with more tiles does not show higher performance.

We can also observe that the larger the batch is, the higher perfor-

mance is obtained for DIMA solution compared DRAMs owning to

the its more paralleled computations. Additionally, it can be seen

that DIMA is 11.2× faster that ReRAM solution. Note that ReRAM

design employs matrix splitting due to intrinsically limited bit lev-

els of RRAM device so multiple sub-arrays are occupied. Besides.

ReRAM crossbar has a large peripheral circuit’s overhead such as



buffers and DAC/ADC which contribute more than 85% of area [7].
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Figure 10: Performance evaluation of different accelerators

normalized by area (Y-axis=Log scale).

4.7 Memory Wall
Fig. 11a depicts the memory bottleneck ratio i.e. the time fraction

at which the computation has to wait for data and on-/off-chip

data transfer obstructs its performance (memory wall happens).

The evaluation is performed according to the peak performance

and experimentally extracted results for each platform considering

number of memory access. The results3 show the DIMA’s favorable

solution for solving memory wall issue. (1) We observe that DIMA

(with differentm size) and DRAM-3T1C solutions spend less than

∼14% time for memory access and data transfer. However, ASIC-

and DRAM-1T1C accelerators spend more than 90% time waiting

for the loading data. (2) In the larger batch size, ReRAM solution

shows lower memory bottleneck ratio even compared with DIMA.

This comes from two sources: (1) increased number of computa-

tional cycles and (2) unbalanced computation and data movement

of DIMA’s binary-weight convolver due to limitation in number

of activated sub-arrays when number of operands increases. The

less memory wall ratio can be interpreted as the higher resource

utilization ratio for the accelerators which is plotted in Fig. 11b. We

observe that DIMA can efficiently utilize up to 50% of its computa-

tion resources. Note that the smaller them is, the higher resource

utilization is achieved. Overall, DIMA, DRAM-3T1C and ReRAM

solutions can demonstrate the highest ratio (up to 65% which re-

confirms the results reported in Fig. 11a.
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5 CONCLUSION
In this paper, we first proposed a new deep CNN architecture,

called Add-Net. In Add-Net, the computationally-expensive con-

volution operations are converted into hardware-friendly Addi-

tion/Subtraction operations. Then, we proposed a Depthwise CNN

In-Memory Accelerator (DIMA) based on SOT-MRAM computa-

tional sub-arrays to efficiently process the Add-Net. Our device-to-

architecture co-simulation results shows that with a comparable

3GPU data could not be accurately reported for this evaluation.

inference accuracy to the baseline CNN on the different data-set,

DIMA can obtain ∼1.4× better energy-efficiency and 15.7× speedup

compared to ASICs, and, ∼1.6× better energy-efficiency and 5.6×

speedup over the best DRAM-based accelerators.
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